Projects per year
Personal profile
Research Interests
My research group develops optoelectronic devices to interface with neural systems in an effort to understand aspects of neural processing. We collaborate closely with leading neuroscientists and develop high-end technology using advanced semiconductor processing techniques.
Optogenetics: This technique allows neurons to be optically controlled (both activated and suppressed) and has become part of the toolkit allowing neuroscientists to further understanding of the brain. We develop novel photonic devices that allow spatio-temporal control over neural circuits by integrating micron-scale light sources (μLEDs) on to minimally invasive neural probes. These probes can optically excite neurons with laminar specificity and integrated microelectrodes can record the subsequent neural activity.
We work closely with neuroscientist, Dr Shuzo Sakata, who tests these probes in vivo. The work is summarised in the following publication: http://www.nature.com/articles/srep28381
The combination of high-density electrophysiological recordings with genetic manipulation techniques has the potential to make important discoveries in the field of neuroscience.
Retinal Prosthesis: We collaborate closely with the group of Prof. Daniel Palanker (Stanford) on the development of an optoelectronic retinal prosthesis to restore sight to patients with degenerative retinal diseases. Here we fabricate an implantable silicon chip that captures the visual scene through near infrared image projection, which also remotely powers the wireless device. A research driver for this project is the development of a device that can restore detailed vision to patients through a minmally invasive implant. For more information see the following publications: Nature Photonics (doi:10.1038/nphoton.2012.104) and Nature Medicine (doi: doi:10.1038/nm.3851).
Microelectrode Arrays: We have developed high-density microelectrode arrays for the recording of extracellular signals from retinal tissue. This state-of-the-art system is being used to study retinal processing and encoding of dynamic visual images at Stanford University (Chichilnisky Lab) and retinal development in the mouse at the University of California Santa Cruz (Sher Lab).
An example research output from this project is detailed in the Nature publication (doi:10.1038/nature09424) where the system was used to study colour processing in the retina. It required close collaboration between technology groups at the University of Strathclyde, the University of California Santa Cruz (Litke & Sher), AGH University, Krakow (Dabrowski & Hottowy) and neuroscientists at Stanford (Chichilnisky).
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):
Keywords
- Neurophotonics
- Microelectrode arrays
- Optogenetics
Fingerprint
- 1 Similar Profiles
Network
-
Towards optogenetic cortical implants for hearing impaired HEARLIGHT (H2020 FET OPEN)
European Commission - Horizon 2020
1/04/21 → 31/03/25
Project: Research
-
Deep brain technologies to understand the cellular origin of diseases DEEPER
Mathieson, K., Sakata, S., Wozny, C. & McAlinden, N.
European Commission - Horizon 2020
1/01/21 → 30/04/25
Project: Research
-
Photovoltaic retinal prosthesis with high pixel density
Mathieson, K., Loudin, J., Goetz, G., Huie, P., Wang, L., Kamins, T. I., Galambos, L., Smith, R., Harris, J. S., Sher, A. & Palanker, D., Jun 2012, In: Nature Photonics. 6, 6, p. 391-397 7 p.Research output: Contribution to journal › Article › peer-review
245 Citations (Scopus) -
Depth-specific optogenetic control in vivo with a scalable, high density µLED neural probe
Scharf, R., Tsunematsu, T., McAlinden, N., Dawson, M. D., Sakata, S. & Mathieson, K., 23 Jun 2016, In: Scientific Reports. 6, 10 p., 28381.Research output: Contribution to journal › Article › peer-review
Open AccessFile77 Citations (Scopus)141 Downloads (Pure)
Datasets
-
Optogenetic activation of neocortical neurons in vivo with a sapphire-based micro-scale LED probe
McAlinden, N. (Creator), Sakata, S. (Creator) & Mathieson, K. (Contributor), University of Strathclyde, 2015
DOI: 10.15129/53ec9764-79b1-4746-b5bc-f45088b5a774
Dataset
-
Depth-specific optogenetic control in vivo with a scalable, high density µLED neural probe: Dataset
Mathieson, K. (Creator), McAlinden, N. (Contributor), Sakata, S. (Creator), Scharf, R. (Creator), Dawson, M. (Contributor) & Tsunematsu, T. (Creator), University of Strathclyde, 7 Jun 2016
DOI: 10.15129/a8b7f487-3903-4bee-a2a9-71195599e12d
Dataset
Activities
-
External examiner for "Nanokick"
Keith Mathieson (External Examiner)
12 Jan 2017Activity: Examination types › Examination
-
University of Utah Bioengineering Seminar
Keith Mathieson (Invited speaker)
16 Nov 2016Activity: Talk or presentation types › Invited talk