Glenn Burley

Prof

  • United Kingdom

Personal profile

Personal Statement

Glenn A. Burley (GAB) is Professor of Chemical Biology at the University of Strathclyde. The main focus of GAB’s research programme is the development of molecular probes to further our understanding of processes involved in gene expression. GAB was awarded a Bachelor of Medicinal Chemistry (Hon. I) and a PhD in Organic Chemistry from the University of Wollongong, Australia. GAB was a post-doctoral fellow in the Fullerene Science Centre at the University of Sussex (2001-2003) and an Alexander von Humboldt Fellow at the University of Munich (2004-2006).  GAB began his independent career as an EPSRC Advanced Fellow in 2007 at the University of Leicester, before moving to Strathclyde in 2011.

More information can be found at: www.burleylabs.co.uk

Research Interests

The Burley group (www.burleylabs.co.uk) applies a problem-based ethos that utilizes synthetic organic chemistry, biosynthesis and physical organic chemistry to explore regulatory mechanisms of transcription and RNA processing. In collaboration with bio-engineers, the group is constructing a new generation of nucleic acid-programmed nano-assemblies for diagnostic and light-harvesting applications.  

Three nodes of research are currently being pursued:

  1. Chemical Biology of alternative RNA splicing (in collaboration with Prof. Ian Eperon, University of Leicester) – Alternative RNA splicing is a major contributor to protein diversity and genetic regulation operating in eukaryotic cells, yet the mechanisms by which it is regulated are poorly understood. This research programme is aimed at unravelling fundamental issues associated with splice site selection using small molecule and large molecule (oligonucleotides and protein hybrids) probes. These methods are being applied to further our understanding in diseases such as Spinal Muscular Atrophy (SMA) and Prostate Cancer.
  2. DNA-based construction of molecular devices (in collaboration with Prof. Richard Cogdell FRS & Dr Alasdair Clark, University of Glasgow) - We are currently developing self-assembly approaches for the construction of DNA-programmed optoelectronic and light-harvesting devices. DNA-binding molecules are being developed that read the genetic code of DNA and direct the assembly of noble metal nanoparticles and light-harvesting proteins in defined positions along a DNA nanostructure. We are now applying this technology to build DNA-programmed light-harvesting devices and plasmonic waveguides for molecular electronics and medical diagnostic applications.
  3. Synthetic Organic Chemistry (in collaboration with Dr Allan Watson, University of St. Andrews) - New bioconjugation methodology is being developed using ynamines as a new generation of click chemistry reagents. These functional groups display unique reactivity relative to their alkyne cognates enabling the efficient and chemoselective construction of bioconjugates and as target identificaiton and validation tools in chemical biology.

See www.burleylabs.co.uk for further details.

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 9 - Industry, Innovation, and Infrastructure

Fingerprint

Dive into the research topics where Glenn Burley is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or