• United Kingdom

Accepting PhD Students

PhD projects

- Development of novel tumour-targeted nanomedicines for cancer therapy

If you made any changes in Pure these will be visible here soon.

Personal profile

Personal Statement

Dr Christine Dufès is a Reader (Associate Professor) in Nanomedicine and Director of the Postgraduate School at the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS). She teaches on the Master of Pharmacy and on various MSc postgraduate degrees.

Christine obtained a Doctorate in Pharmacy (with Distinction and congratulations of the Jury, 1997) and a PhD (with a European Label, Distinction and congratulations of the Jury, 2002) from the University of Poitiers (France). After four years as a post-doctoral researcher at the Cancer Research UK Beatson Laboratories in Glasgow, she was appointed as a Lecturer in SIPBS in 2006.

Her research focuses on the development of targeted drug- and gene-based nanomedicines for cancer therapy and brain delivery. It resulted in 2 patents, 54 publications, 4 book chapters and attracted 4000+ citations (h-index: 32 (Google scholar)). All her PhD students (from diverse backgrounds) submitted their theses within the imparted time and are now further developing their careers in either Academia or Industry.

Christine has been awarded the Bourse d’Excellence Lavoisier (2002), the Award of the 9th Annual Symposium of the United Kingdom and Ireland Controlled Release Society (2003), the Biochemical Journal Young Investigator Award (2009), the Tom Gibson Memorial Award (2012), the Scientist Medal of the International Association of Advanced Materials (2021) and the Outstanding Woman Researcher in Nanomedicine award of the Venus International Foundation (2021) for her research. She also received the “Best Overall” Strathclyde Teaching Excellence Award (2013) for her teaching, was nominated 10 times since 2013 and was shortlisted in the category “Best in Faculty of Science” in 2015, 2018 and 2022. She was the only staff member from her department to be nominated for a Strathclyde Teaching Excellence Award by the students in 2020. 

She is a Fellow of the Higher Education Academy, an elected Fellow of the Royal Society of Biology, a Trustee of the British Society of Nanomedicine, Strathclyde Network Lead for the UK Reproducibility Network, Senior Editor of Journal of Interdisciplinary Nanomedicine, Editorial Advisory Board member of Biomaterials Science, Review Editor of Frontiers in Bioengineering and Biotechnology – Nanobiotechnology, and member of the Editorial Boards of 6 journals (Journal of Liposome ResearchJournal of Pharmaceutical Sciences, Journal of Nanotechnology: Nanomedicine & Nanobiotechnology, Pharmaceutical Nanotechnology, Pharmaceutics and Scientia Pharmaceutica).

Her research highlights include:

DNA-based nanomedicines (cancer therapy):

  • Tumour regression/disappearance after intravenous administration of a novel tumour-targeted dendriplex encoding Tumour Necrosis Factor (TNFα), with complete disappearance of 90% of the tumours and regression of the remaining ones
  • Regression/disappearance of prostate tumours after intravenous administration of a novel tumour-targeted polypropylenimine dendrimer combined with either TNFα, TRAIL and IL-12 expression plasmids, with complete disappearance of up to 70% of PC-3 tumours and up to 50% of DU145 tumours. It is the first time that gene therapy was shown to be efficacious for the treatment of prostate cancer in laboratory settings (doctoral work of Dr Majed Al Robaian and Dr Najla Altwaijry).
  • Tumour regression/disappearance after intravenous administration of a novel tumour-targeted dendriplex encoding p73, with complete disappearance of 10% of the tested tumours and long-term survival of the animals. It is the first time that a tumour-targeted p73 could lead to tumour suppression after intravenous administration.

 

DNA-based nanomedicines (brain delivery):

  • Increase of gene expression in the brain followingintravenous injection of transferrin-bearing dendriplex (at least twice higher than that of the unmodified dendriplex), while decreasing the non-specific gene expression in the lung. Gene expression was at least 3-fold higher in the brain than in any tested peripheral organs (doctoral work of Dr Sukrut Somani).
  • Increase of gene expression in the brain following intravenous injection of lactoferrin-bearing dendriplex (by more than 6.4-fold compared to that of the unmodified dendriplex), while decreasing the non-specific gene expression in the lung and the kidneys. Gene expression was significantly higher in the brain than in any other tested peripheral organs. The administered gene was expressed in the hippocampus, which plays an important role in consolidating information from short-term memory into long-term memory. It is a primary site for Alzheimer's pathology, which makes gene expression in this brain area particularly interesting for future therapeutic developments (doctoral work of Dr Sukrut Somani).

 

Drug-based nanomedicines (cancer therapy): 

  • Tumour regression/disappearance after intravenous administration of the vitamin E extract tocotrienol entrapped in novel tumour-targeted vesicles, with complete disappearance of 40% of the melanoma tumours. It is the first time that a tocotrienol formulation can lead to tumour suppression (doctoral work of Dr Ju Yen Fu).
  • Tumour regression/disappearance after intravenous administration of the green tea extract epigallocatechin gallate encapsulated in novel tumour-targeted vesicles, with complete disappearance of 40% of the tumours for both tested tumour types. It is the first time that a green tea extract was shown to have an anti-cancer therapeutic effect.
  • Synergy between docetaxel and mebendazole (collaborative work with Professor Hing Leung (Principal Investigator), the Beatson Institute for Cancer Research). We demonstrated that mebendazole (an anthelmintic drug that inhibits microtubule assembly) potently synergises docetaxel-mediated cell kill in vitro and in vivo. Liposomes entrapping docetaxel and mebendazole suppressed in vivo prostate tumour growth and extended progression-free survival. Our data supports a new concept of combined mebendazole/docetaxel treatment that warrants further clinical evaluation.

 

Podcast about recent research results: http://www.youtube.com/embed/JhbIoXsAM7M 

Website: http://www.dufeslab.com/

 

Research Interests

Design and development of novel targeted drug- and gene-based nanomedicines for cancer therapy and brain delivery

Teaching Interests

Christine Dufès teaches on the Master of Pharmacy and on various MSc postgraduate degrees. 

 

  • UNDERGRADUATE TEACHING (MPharm)

- Being a Pharmacist (Years 2-4, MP220, MP320, MP420)

- Normal function of the gastrointestinal system (Year 2, MP221)

- Normal function of the nervous and endocrine systems (Year 2, MP223)

- Management of Infection and Infectious Diseases (Year 3, MP321)

- Management of CNS Conditions (Year 4, MP422)

  

  • POSTGRADUATE TEACHING (MSc)

- Drug discovery and development in cancer (MSc Cancer studies, MP988)

- Novel therapeutics and Biopharmaceuticals (MSc Advanced Drug Delivery, MP818)

- Advanced Topics In Drug Delivery (MSc Advanced Drug Delivery, MP952)

- Bioanalysis, biotechnology and quality management (MSc Pharmaceutical analysis, MP919) 

Expertise related to UN Sustainable Development Goals

In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all. This person’s work contributes towards the following SDG(s):

  • SDG 3 - Good Health and Well-being
  • SDG 9 - Industry, Innovation, and Infrastructure

Keywords

  • Targeted nanomedicines
  • Cancer therapy
  • Brain delivery
  • Gene therapy
  • Nutraceuticals
  • Dendrimers

Fingerprint

Dive into the research topics where Christine Dufès is active. These topic labels come from the works of this person. Together they form a unique fingerprint.
  • 1 Similar Profiles

Collaborations and top research areas from the last five years

Recent external collaboration on country/territory level. Dive into details by clicking on the dots or