Data for: "Simultaneous polarization transformation and amplification of multi-petawatt laser pulses in magnetized plasmas"

  • Xiaolong Zheng (Contributor)
  • Su Ming Weng (Contributor)
  • Zhe Zhang (Creator)
  • Hanghang Ma (Contributor)
  • M. Chen (Creator)
  • Paul McKenna (Creator)
  • Zheng-Ming Sheng (Contributor)



With increasing laser peak power, the generation and manipulation of high-power laser pulses becomes a growing challenge for conventional solid-state optics due to their limited damage threshold. As a result, plasma-based optical components which can sustain extremely high fields are attracting increasing interest. Here, we propose a type of plasma waveplate based on magneto-optical birefringence under a transverse magnetic field, which can work under extremely high laser power. Importantly, this waveplate can simultaneously alter the polarization state and boost the peak laser power. It is demonstrated numerically that an initially linearly polarized laser pulse with 5 petawatt peak power can be converted into a circularly polarized
pulse with a peak power higher than 10 petawatts by such a waveplate with a centimeter-scale diameter. The energy conversion efficiency of the polarization transformation is about 98%. The necessary waveplate thickness is shown to scale inversely with plasma electron density ne and the square of magnetic field B₀, and it is about 1 cm for ne = 3×10²⁰ cm¨³ and B₀ = 100 T. The proposed plasma waveplate and other plasma-based optical components can play a critical role.
for the effective utilization of multi-petawatt laser systems.

This site includes records provided by Elsevier's Data Monitor product. University of Strathclyde does not control or guarantee the accuracy, relevance, or completeness of the information contained in such records and accepts no responsibility or liability for such information.
Date made available10 Jan 2023

Cite this