Data for: "Landscape effects on demersal fish revealed by field observations and predictive seabed modelling"

  • Sophie A M Elliott (Creator)
  • Alessandro Sabatino (Creator)
  • Mike Heath (Creator)
  • W.R. Turrell (Creator)
  • David M Bailey (Creator)



Nature conservation and fisheries management often focus on particular seabed features that are considered vulnerable or important to commercial species. As a result, individual seabed types are protected in isolation, without any understanding of what effect the mixture of seabed types within the landscape has on ecosystem functions. Here we undertook predictive seabed modelling within a coastal marine protected area using observations from underwater stereo-video camera deployments and environmental information (depth, wave fetch, maximum tidal speeds, distance from coast and underlying geology). The effect of the predicted substratum type, extent and heterogeneity or the diversity of substrata, within a radius of 1500 m around each camera deployment of juvenile gadoid relative abundance was analysed. The predicted substratum model performed well with wave fetch and depth being the most influential predictor variables. Gadus morhua (Atlantic cod) were associated with relatively more rugose substrata (Algal-gravel-pebble and seagrass) and heterogeneous landscapes, than Melanogrammus aeglefinus (haddock) or Merlangius merlangus (whiting) (sand and mud). An increase in M. merlangus relative abundance was observed with increasing substratum extent. These results reveal that landscape effects should be considered when protecting the seabed for fish and not just individual seabed types. The landscape approach used in this study therefore has important implications for marine protected area, fisheries management and monitoring advice concerning demersal fish populations.

External PANGAEA deposit.
Date made available3 Jul 2019
Geographical coverageFirth of Clyde

Research Output

Landscape effects on demersal fish revealed by field observations and predictive seabed modelling

Elliott, S. A. M., Sabatino, A. D., Heath, M. R., Turrell, W. R. & Bailey, D. M., 11 Dec 2017, In : PLoS One. 12, 12, 13 p., e0189011.

Research output: Contribution to journalArticle

Open Access
  • 6 Citations (Scopus)
    23 Downloads (Pure)


    Student Theses

    Modelling of tides, waves and currents in coastal waters : hydrodynamics of the Firth of Clyde and of the east coast of Scotland

    Author: Sabatino, A., 26 May 2017

    Supervisor: Heath, M. (Supervisor) & Speirs, D. (Supervisor)

    Student thesis: Doctoral Thesis

    Cite this

    Elliott, S. A. M. (Creator), Sabatino, A. (Creator), Heath, M. (Creator), Turrell, W. R. (Creator), Bailey, D. M. (Creator) (3 Jul 2019). Data for: "Landscape effects on demersal fish revealed by field observations and predictive seabed modelling"10.1594/PANGAEA.879306