Data for: "Imaging Threading Dislocations and Surface Steps in Nitride Thin Films Using Electron Backscatter Diffraction"

Dataset

Description

This dataset provides the experimental data used to generate the figures in the paper entitled "Imaging Threading Dislocations and Surface Steps in Nitride Thin Films Using Electron Backscatter Diffraction".

Electron backscatter diffraction (EBSD) measurements were performed using a Nordlys EBSD detector from Oxford Instruments attached to an FEI Quanta 250 variable pressure field emission SEM. The EBSD data was acquired at 20 kV and 30 kV and at a sample tilt of 70° with respect to the normal of the incident electron beam.

Abstract of the paper:
Extended defects, like threading dislocations, are detrimental to the performance of optoelectronic devices. In the scanning electron microscope, dislocations are traditionally imaged using diodes to monitor changes in backscattered electron intensity as the electron beam is scanned over the sample, with the sample positioned so the electron beam is at, or close to the Bragg angle for a crystal plane/planes. Here we use a pixelated detector instead of single diodes, specifically an electron backscatter diffraction (EBSD) detector. We present post-processing techniques to extract images of dislocations and surface steps, for a nitride thin film, from measurements of backscattered electron intensities and intensity distributions in unprocessed EBSD patterns. In virtual diode (VD) imaging, the backscattered electron intensity is monitored for a selected segment of the unprocessed EBSD patterns. In center of mass (COM) imaging, the position of the center of the backscattered electron intensity distribution is monitored. Additionally, both methods can be combined (VDCOM). Using both VD and VDCOM, images of only threading dislocations, or dislocations and surface steps can be produced, with VDCOM images exhibiting better signal-to-noise. The applicability of VDCOM imaging is demonstrated across a range of nitride semiconductor thin films, with varying surface step and dislocation densities.
Date made available3 Nov 2023
PublisherUniversity of Strathclyde

Cite this